Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis
نویسندگان
چکیده
AIM To evaluate the pharmacodynamics of compounds in clinical development for nonalcoholic steatohepatitis (NASH) in obese mouse models of biopsy-confirmed NASH. METHODS Male wild-type C57BL/6J mice (DIO-NASH) and Lep ob/ob (ob/ob-NASH) mice were fed a diet high in trans-fat (40%), fructose (20%) and cholesterol (2%) for 30 and 21 wk, respectively. Prior to treatment, all mice underwent liver biopsy for confirmation and stratification of liver steatosis and fibrosis, using the nonalcoholic fatty liver disease activity score (NAS) and fibrosis staging system. The mice were kept on the diet and received vehicle, liraglutide (0.2 mg/kg, SC, BID), obeticholic acid (OCA, 30 mg/kg PO, QD), or elafibranor (30 mg/kg PO, QD) for eight weeks. Within-subject comparisons were performed on changes in steatosis, inflammation, ballooning degeneration, and fibrosis scores. In addition, compound effects were evaluated by quantitative liver histology, including percent fractional area of liver fat, galectin-3, and collagen 1a1. RESULTS Liraglutide and elafibranor, but not OCA, reduced body weight in both models. Liraglutide improved steatosis scores in DIO-NASH mice only. Elafibranor and OCA reduced histopathological scores of hepatic steatosis and inflammation in both models, but only elafibranor reduced fibrosis severity. Liraglutide and OCA reduced total liver fat, collagen 1a1, and galectin-3 content, driven by significant reductions in liver weight. The individual drug effects on NASH histological endpoints were supported by global gene expression (RNA sequencing) and liver lipid biochemistry. CONCLUSION DIO-NASH and ob/ob-NASH mouse models show distinct treatment effects of liraglutide, OCA, and elafibranor, being in general agreement with corresponding findings in clinical trials for NASH. The present data therefore further supports the clinical translatability and utility of DIO-NASH and ob/ob-NASH mouse models of NASH for probing the therapeutic efficacy of compounds in preclinical drug development for NASH.
منابع مشابه
Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is an unmet need associated with metabolic syndrome. There are no approved therapies for NASH; however, glucagon-like peptide-1 receptor (GLP-1R) and farnesoid-X receptor (FXR) agonists are promising drug targets. We investigated the therapeutic effects of co-administration of a GLP-1R agonist, IP118, with FXR agonist obeticholic acid (OCA) in mice....
متن کاملNASH: A glance at the landscape of pharmacological treatment.
The role of nonalcoholic fatty liver disease, namely nonalcoholic steatohepatitis (NASH), as risk factor for liver- and non-liver-related morbidity and mortality has been extensively reported. In addition to lifestyle changes, capable of removing the metabolic factors driving disease progression, there is an urgent need for drugs able to reduce hepatic necroinflammation without worsening of fi...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملTargeting bile acids and lipotoxicity for NASH treatment
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting approximately 20%-30% of the population in Western countries. Nonalcoholic steatohepatitis (NASH) is the progressive form of NAFLD that can develop into cirrhosis and hepatocellular carcinoma (HCC). However, the underlying mechanism of progression of steatosis to NASH and cirrhosis is poorly understood....
متن کاملhe Effects of Rosmarinic Acid on the Liver Fibrosis Induced by Non-alco-holic Steatohepatitis in Male Mice
Background and Objectives: Non-Alcoholic Steatohepatitis (NASH) is a serious and increasing liver dis-ease, which develops into cirrhosis, fibrosis, and hepatocellular carcinoma. Rosmarinic Acid (RA) is a powerful antioxidant and anti-inflammatory compound. Therefore, this study aimed to assess the role of RA on a mouse model of NASH-induced liver fibrosis. Methods: In this research, C57/BL6 mi...
متن کامل